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ABSTRACT

This paper outlines results presented in [21 on the problem of

controlling bilinear distributed parameter systems. Specifically we give

results showing that one cannot control a bilinear distributed parameter

system to a full open neighborhood of an infinite dimensional state space.

Nevertheless we do present a result which allows identification of an

accessible set of states for a class of whyperbolic" control systems.
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SIGNIFICANCE AND EXPIANTIOM

One way to view control of linear partial differential equations where

the controls enter as time varying coefficients is as a bilinear distributed

system. For example the problem of controlling a rod via the axial load falls

in this class. This paper examines the possibility of using such controls to

steer the system from one location to another. It shows that this problem is

generally ill-posed but may be solved in certain exceptional circumstances.
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DISTRZIBUTED BILINE R SYSTX4Ss POSITIVE AND NEGATIVE

RESULTS IN CONTROLLBILITY

Me Slearod*

1 . Distributed bilinear control systems

By a distributed bilinear control system we mean a system of the form

;(t) - Aw(t) + p(t)Bwt) 0 (.1)

0(O) = (0 6 X , (1.2)

where A generates a C0  semigroup of bounded linear operators on a

(possible complex) Banach space X, S : X + X is a bounded linear operator,

and p G L1([0,T]; R) is a real valued control defined on a specified

) interval [0,T].

Of particular interest in applications is the abstract "hyperbolic"

bilinear control system given by

a(t) + Au(t) + p(t)Bu(t) m 0 , (1.3)

u(O) - u 0 Q D(AW, u10 - u 1 6 H 1.4)

* where A is a positive definite self-adjoint operator with dense domain

D(A) in a real Hilbert space H, B is a bounded linear operator from D(AY2)

to H, and p (the control) is again in L1 ([0,T]; R). We suppose A- 1 is

compact and A has simple eigenvalues A2, n m 1,2,..., where

0 < A < A <***. Then there exists a corresponding sequence {*n} of
1 2

eigenfunctions: A# - n*n, <*n,* > - 6 where <0,*> denotes the inner
n n n n mN H n H

product in H.
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While we could rewrite (1.3), (1.4) in first order form (1.1), (1.2) in

the usual manner of dynamical systems (see for example [1], [2)) it is

preferable for our purposes to introduce a complex structure similar to that

used for Hamiltonian systems.

Let H denote the complexified iLlbert space H O iH with inner product

defined by

<1 + iy1 , x2 + iy2> - <x1 ,x2 >H + <yl,Y 2>H + i[<Yl'x 2 >H - <xlY2>.]

for x1 ,x2 ,yly 2 Q H. Let z(t) - 1/2u(t) + iu(t). Then (1.3), (1.4) becomes

;(t) -Az(t) + p(t)9z(t) , (1.5)

z(0) UA 12u +i U G1H / (1.6)
where A -) -il/2, 8 - -iM /2Re, and thus (1.3), (1.4) has been put in the

form (1.1), (1.2) with X -H.

Example. The rod equation with hinged ends.

Consider the system

utt + Uxxxx + p(t)uxx - , 0 < x < 1 (1.7)

with boundary conditions

u = Uxx M 0 at x-0,1 , (1.8)

with initial conditions

u(x,O) - u0(x), ut(x,0) - u (X), 0 < x < 1 (1.9)

In the notation of (1.3), (1.4) we have

d4 d2

A d B d H2 2 4A 4 B. -2, H - L (0,1), D(A) - {u Q H4(0#1);
dx dx

UP u 69 o )) D0,12. ) - H(0,1)n M(0,1), n nX

#n = r sin nix, n - 1,2, ....

Here p(t) represents the axial load on the rod.
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2. The control problem

Consider the system 1.1), (1.2). The controllability poblem is

(P) Given h 0 X, find p 6 L ([O,T]! R) so that the (generalized)

solution of 1.1), (1.2) with control denoted by w(tsp, 0 ) satisfies

(.o(T;p,w O) 0 h.

We note two important features of (P). First we observe that even though

1.1) is a linear evolution equation in w for fixed p the map wl(Tg,w0

is in fact a nonlinear function of p : LI (0,T] R) + X. Secondly (and of

great importance for distributed systems) we see that (P) in fact asks us to

control a (generally) infinite dimensional system with controls p(t) in one-

dimensional real space for each t. The first observation means that our

analysis may likely resort to local theory (the inverse function theorem).

The second observation is more serious since it will generally imply the map

i (T;6,W0 ) : Lr ([O,T]; R) + C([O,T]; X) is compact for r > 1. More precisely

it was proved in [2].

i '  Theorem 1. Let X be a Banach space with dim X = .If a > T > 0 and

Pn + p weakly in LI((o,T]; R) then w(*p n, WO ) + w(*;p,(O ) strongly in

C([0,T]! X). Moreover the set of states accessible from w0  defined by

S(wO ) 0 U w(tjp,t 0 )
0 t)0

r>1

is contained in a countable union of compact sets of X, and in particular

has dense complement.

The proof of Theorem I is quite technical and is given in [2). Its

importance in controllability of (1.1), (1.2) is readily seen, however. For

if the set of states accessible from w0 S(b0) has dense complement we shall
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never be able to steer to an open neighborhood in X of Wo . In other words

except for an exceptional set of h 9 X (P) is ill-posed.

3. Identification of the accessible set for abstract "hyperbolic" bilinear

control systems.

Having noted in Meorem 1 the inability to control (1.1), (1.2) to any

open neighborhood of X, we turn instead to trying to identify what states

are accessible from a given w0 9 X. Specifically we consider the abstract

"hyperbolic" bilinear control system (1.3), (1.4).

As the basis {(n) of H may be regarded as a basis of H, any z r H

may be expanded as a Fourier series in the basis {#n. hence we may write

an
s(t) -I z -n(t)#n • (3.1)

n-1

We assume in addition that

<B~nm>H - 0 for n j m (3.2)

and assume

<B*,,tn> -bn O 0

Then substitution of (3.1) into (1.5) yields the infinite system of ordinary

differential equations
b

n (t) - int) - i(t)z Re zn(t), n - 1,2,... (3.3)
n

with initial conditions

z n(0) = zn zOn <Z(O), n > (4)

In itself (3.3) is not much of an irprovement over the earlier

formulations of our problem in that the map p + (z(T;pz(0))} from

Lt((0,T]; R) into (the natural state space for (33), (3.4)) C(I0,T] 1 )

is still compact (now for r 0 1). However (3.3) allows us to make the

remarkable change of variables
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A:) zn(t) b
: n~t - [- " exp il ,t + n (t)) -1] 35

n n

where P(t) - p(s)ds

A straightforward computation shows that ( n(t)} satisfies the
n

equations

p)z~ b b
nlt) - i 2t) n ( n(t) + 1)expf2i(Xnt +.A-P(t))] , (3.6)

On n n

n (0) - 0, n 3 1,2,... , (3.7)

where we assume zOn k 0.

It is not hard to show (3.6), (3.7) has a solution

(Cn(t;p)l 6 C((0,T); 12) which is C1 in p as a map from L2((0,T]; R) to

20 The amazing thing is that this map is not compact. Hence we may attempt

to control (3.6) in a neighborhood in I of the initial state (0W. The
2

natural way to do this is, as remarked earlier, to apply the inverse function

theorem and show Dp (n (T;O)) (the Frechet derivative of (Cn(T;p)} with

respect to p evaluated at p = 0) is an isomorphism from L2 ((0,TJ; R) to

£2" Actually this won't be the case since D {C (T;0)) isn't one to one but
2~p n

it is onto. Fortunately the "local onto theorem" (3) will still imply the

non-unique solvability of C (T;p) = h n , n = 1,2,3,... for some T > 0 and

p G L2((0,TJ, R) when Nth n is sufficiently small. Now knowing the

accessible states of (3.6), (3.7) is an open neighborhood of (0) in t2 we

can translate back via (3.5) to find the accessible states of (3.3) from data

(3.4).

For example for the rod equation with hinged ends (1.7), (1.8)

<B#n'#m>H = 0 and assumptions (3.2) are satisfied. In fact we can prove

Theorem 2. Assume zon 1 0 for the rod equation with hinged ends (1.7),

1.8). Then there exists e > 0 so that if ithn}I I < E we can solve
2
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2u (.) - (1 + h),on, n- 1,2,...

for infinitely many p Q L2(0, j ; I) with f.2s'p(t)dt 0.

Thus while we cannot hit all states in a small A neighborhood of
2

(a I we can hit those of the form ( + h )z 1, l(hn)I < e. Of course
on n on n &2using the definition of x this result could be translated into a statement

(albeit messy) regarding u and ut for (1.7), (.1.8), (1.9). Furthermore

using the above local result we can use a standard argument to prove

Corollary. For (1.7), (1.8) with zOn.P 0 n = 1,2,... the set of states

accessible for {z On is dense in H.
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